Statistical Physics

- 14-1 (a) Calculate the entropy S and the Helmholtz function F for an assembly of distinguishable particles.
 - (b) Show that the total energy U and the pressure P are the same for distinguishable particles as for molecules of an ideal gas while S is different. Explain why this makes sense.
- **14-3** (a) Show that for an ideal gas of N molecules,

$$\frac{g_j}{N_j} = \frac{Z}{N} e^{\varepsilon_j/k_B T},$$

where

$$\frac{Z}{N} = \frac{(k_B T)^{5/2}}{P} \left(\frac{2\pi m}{h^2}\right)^{3/2}.$$

- (b) For $\varepsilon_j = (3/2)k_BT$, T = 300 K, $P = 10^3$ Pa, and $m = 10^{-26}$ kg, calculate g_j/N_j .
- 14-6 A tank contains one kilomole of argon gas at 1 atm and 300 K. The mass of an argon atom is 6.63×10^{-26} kg.
 - (a) What is the internal energy of the gas in joules? What is the average energy of a molecule in eV?
 - (b) What is the partition function Z?
 - (c) What is the chemical potential μ in eV?
 - (d) What is N_j/g_j