Statistical Physics

12-1 Suppose that you flip 50 "honest" coins.

- (a) How many microstates are there? Give your answer as a factor of the order of unity times an integral power of 10.
- (b) How many microstates are there corresponding to the most probable macrostate?
- (c) What is the true probability of achieving the most probable macrostate?

Note: Use a calculator that gives you n! or a table of gamma functions ($\Gamma(n+1) = n!$). Stirling's approximation will not give you sufficient accuracy.

- **12-6** Consider a model thermodynamic assembly in which the allowed (nondegenerate) states have energies $0, \varepsilon, 2\varepsilon, 3\varepsilon, 4\varepsilon, 5\varepsilon, 6\varepsilon$. The assembly has *four distinguishable* (localized) particles and a total energy $U = 6\varepsilon$.
 - (a) Tabulate the nine possible distributions of the four particles among the energy levels $n\varepsilon$, where $n = 0, 1, \ldots$
 - (b) Evaluate ω_k for each of the macrostates and calculate $\Omega = \sum_k \omega_k$.
 - (c) Calculate the *average* occupation numbers

$$\overline{N}_j = \sum_k N_{jk} \omega_k / \Omega$$

of the four particles in the energy states.

12-12 Consider a gas consisting of one kilomole of helium atoms at standard temperature and pressure. Calculate the degeneracy $g(\varepsilon)$ for the energy level $\varepsilon = (3/2)k_BT$ (take $\gamma_s = 1$). What is the approximate ratio of $g(\varepsilon)$ to the number of atoms N