- 11-17 Diffusion can be regarded as a random walk problem in which the successive displacements of a gas molecule are statistically independent. In this model, the distance L traveled by a molecule after N displacements is related to the mean free path ℓ by the expression $L^2 = N\ell^2$, and the time t required to move a distance L is given by $t = N\ell/\bar{v}$. Using these relations, estimate how long it would take a molecule in a room of macroscopically "still" air with uniform temperature and pressure to move a distance of 5 meters.
- **11-18** The experimental value of the viscosity of argon gas is found to be 22.0×10^{-6} Pa s at 15 °C and atmospheric pressure. The atomic weight is 39.94. Estimate the diameter of an argon atom.
- **11-19** The radius of an air molecule is approximately 1.8×10^{-10} m, its mass is about 4.8×10^{-26} kg, and it has 5 degrees of freedom. The molecular weight of air is 29 and its density is 1.29 kg/m^3 under standard conditions.
 - (a) Estimate the values of the coefficient of viscosity η , the thermal conductivity λ , and the diffusion constant D under these conditions.
 - (b) Check that for air,

$$\frac{\lambda M}{\eta c_v} \approx 1$$
 and $\frac{D\rho}{\eta} \approx 1$.

Also, check that these quantities are indeed dimensionless.